五年级下册数学教案

网上有关“五年级下册数学教案”话题很是火热,小编也是针对五年级下册数学教案寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

关于五年级下册数学教案5篇

作为一名人民教师,时常需要用到教案,教案是教学蓝图,可以有效提高教学效率。那么五年级下册数学教案怎么写呢?下面是我给大家整理的五年级下册数学教案,希望大家喜欢!

五年级下册数学教案精选篇1

教学目标:

1.掌握长方体和正方体的特征,认识它们之间的关系。

2.培养学生动手操作、观察、抽象概括的能力和初步的空间观念。

3.渗透事物是相互联系,发展变化的辩证唯物主义观点。

教学重点:

1.长方体和正方体的特征;

2.立体图形的识图。

教学难点:

1.长方体和正方体的特征;

2.立体图形的识图。

教具准备:

教具:长方体框架、长方体、正方体、圆柱、圆台、长方台等;投影片;动画。 学具:长方体和正方体纸盒。

教学设计:

一、复习准备

1.请同学们自己画一个已经学习过的平面图形;再请每位同学用手摸一摸画出的图形;老师明确:这些图形都在一个平面上,叫做平面图形。

2.教师摆出长方体、正方体、圆柱、圆台、长方台、墨水瓶盒等。 教师提问:这些物体的各部分都在一个面上吗?(不是) 教师明确:这些物体的各部分不在一个面上,它们都是立体图形。

3.引入:今天这节课我们要进一步认识长方体有什么特征。

教师板书:长方体的认识

二、学习新课

(一)长方体的特征

1.请同学取出自己准备的长方体。 教师提问:请用手摸一摸长方体是由什么围成的? 请用手摸一摸两个面相交处有什么? 请摸一模三条棱相交处有什么?

教师板书:面、棱、顶点

2.参考讨论提纲来研究长方体的特征。

演示动画“长方体的特征”

讨论提纲:

①长方体有几个面?面的位置和大小有什么关系?

②长方体有多少条棱?棱的位置、长短有什么关系?

③长方体有多少个顶点?

教师板书:长方体:

面:6个,长方形(也可能有两个相对的面是正方形),相对的面完全相同。

棱:12条,相对的4条棱长度相等。

顶点:8个。

教师:请完整地说一说长方体的特征。

3.比较立体图形与平面图形的区别。

老师提问:长方体是立体图形,画在纸上如何与平面图形区别呢? 请观察,你能看到几个面?哪几个面? 你能看见几条棱?哪几条棱?

教师介绍长方体的画法: 看不见的棱画在图纸上用虚线表示,最后面画出的是长方形,其它的面画出的是平行四边形。

4.出示长方体框架观察。

教师提问:框架上的12条棱可以分几组?怎样分? 相交于一个顶点的三条棱长度相等吗?

教师明确:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

(二)正方体特征

1.演示动画“正方体的特征”

教师提问:看一看新得到的长方体与原来长方体比较有什么变化? (长、宽、高变为相等,六个面都变成了正方形,长方体变为正方体)

2.对照长方体的特征学生自己研究正方体的特征。 学生讨论、归纳后,

教师板书:正方体:

面:6个完全相同的正方形。

棱:12条棱长度都相等。

顶:8个。

3.学生讨论比较长方体和正方体的特征。

相同点:面、棱、顶点的数量上都相同;

不同点:在面的形状、面积、棱的长度方面不相同。

教师提问:看一看长方体的特征正方体是否都有?试说一说长方体和正方体的关系。

(正方体是特殊的长方体)

五年级下册数学教案精选篇2

设计理念

数学课程标准明确指出,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。本节课抓住关键词,把握自然数(0除外)按因数个数分类的数学方法,让学生充分讨论质数和合数的特征,经历质数和合数这一知识的发生发展过程,通过观察、比较、分析、归纳,构建质数和合数概念,更好地掌握数学思想,提升学生学习数学的兴趣,培养良好的学习态度。

教学内容

人教版五年级下册第23~24页“质数与合数”。

学情与教材分析

本课是在学生掌握“因数、倍数、奇数、偶数、2、3、5的倍数特征”的基础上进行的。本单元涉及的概念多,“质数与合数”是一节概念教学课,概念抽象易混淆,在生活中运用较少,与学生的生活有一定的距离,是本课的难点也是本单元内容教学的难点。

教学目标

1.让学生经历操作、观察、发现、概念归纳的数学化过程,构建质数和合数概念。

2.把握整数按因数个数的分类法,理解和掌握质数与合数的特征,能应用概念寻找或判断质数。

3.通过研究质数与合数特征的学习活动,体会学习数学的思想方法。

教学准备

课件;练习纸每生一张。

教学过程

活动一:构建质数和合数概念

1.引导学生按要求列出乘法算式:“因数用整数、不用1”。

教师板书“1=”……“20=”,教师不言语,用手势引导学生按要求说出乘法算式。

学情预设:学生中可能出现用1或小数的问题,师用手势提醒“不用1”“用整数”。

2.师:按“用整数、不用1”的要求无法列出乘法算式的数,我们叫它质数;可以列出乘法算式的数,我们叫它合数。

教师依次在这些质数的前面填上“质数”、“合数”,学生自然而然的在教师板书时说出“质数”和“合数”。

设计意图

“活动一”全过程教师基本不言语,只用手势或神情来组织教学,给学生一个神秘感,在创设静谧的氛围中静心体会质数与合数的区别。

活动二:讨论质数和合数的特征

1.师:“从这些乘法算式中,你发现了什么?

学情预设:学生有可能说出质数都是奇数;对策:教师指出2是质数、15是合数;

合数可以写出乘法算式;如果不用1,质数无法写出乘法算式。

2.教师擦除“不用1”,学生列出相应的乘法算式,再进一步用因数的个数来探讨质数和合数的概念。

师:观察因数的个数,你又发现了什么?

从乘法算式中,学生很快并能清晰地发现质数只有1和它本身两个因数,而合数则除了1和它本身两个因数外,还有别的因数(至少三个因数)。

3.根据学生回答板书。

4.讨论:“1”是质数还是合数?

学情预设:有的学生可能认为:1有两个因数,一个是1,一个是它本身,1应该是质数;有的学生可能认为:1的本身还是1,所以1应该只有一个因数;有的学生可能认为:1既不是质数也不是合数。

师把板书写完整。

5.小结:谁能用自己的语言说一说什么样的数叫质数?什么样的数叫合数?怎样判断一个数是质数还是合数?

设计意图

预留足够的时间让学生经历操作、观察、发现、概念归纳的数学化过程,构建质数和合数概念。并尝试根据因数的个数归纳出质数与合数的概念,学会运用质数和合数的特征进行判断,充分感受到知识之间既有区别,又有联系。

活动三:应用概念寻找或判断质数

1.继续寻找30以内的其它质数。

2.做一做:出示数字卡片:17、22、29、35、37、87、93、96、1,将数字卡片填入质数与合数相应的集合圈里。

3.下面的说法正确吗?说说你的理由。

⑴所有的奇数都是质数。()

⑵所有的偶数都是合数。()

⑶在1、2、3、4、5……中,除了质数以外都是合数。()

⑷两个质数的和是偶数。()

设计意图

通过不断的寻找、发现与判断质数的练习中,使学生意识可以用合理的方法来判断,巩固质数与合数特征的认识。

活动四:拓展延伸深化概念

1.你知道他们各是多少吗?(在小组内交流各自的想法后汇报)

⑴两个质数的和是10,积是21,他们各是多少?

⑵两个质数的和是20,积是91,他们各是多少?

⑶最小的质数是?最小的合数是?

2.在括号里填上质数:

8=()+()12=()+()28=()+()

3.数学小阅读:哥德巴赫猜想。

同学们你们知道吗,刚才你们正在尝试解决一道世界难题,做了一件很有价值的事,这个世界难题就是:是不是所有大于2的偶数,都可以写成两个质数的和呢?这个问题是德国数学家哥德巴赫最先提出的,所以被称为哥德巴赫猜想。世界各国的数学家都想攻克这一难题,但至今还未解决。我国数学家陈景润在这一领域已经取得了举世瞩目的成果。

请同学们进行数学小阅读:哥德巴赫猜想。课后,感兴趣的同学们也可以查找相关书籍或上网查阅相关资料。

设计意图

在适度拓展中,尝试解决“任何大于2的偶数,都可以写成两个质数的和”的哥德巴赫猜想。在数学小阅读中,让学生了解数学发展的历史,感受数学文化的魅力,同时留有空间,让学生课后探究。

活动五:总结

这节课你有哪些收获?

五年级下册数学教案精选篇3

教学内容:

五年级下册教科书第65—66页。

教学目标:

1.在具体的问题情境中,探究和理解分数与除法的关系,并能正确地用分数表示两个整数相除的商,会用两种方法叙述分数的意义。

2.在探究过程中,培养学生观察、比较、归纳等探究的能力。

3.体会知识来源于实际生活的需要,激发学习数学的积极性。

教学重点:

经历探究过程,理解和掌握分数与除法的关系。

教学难点:

通过操作,让学生理解一个分数可以表示的两种意义。

教材分析:

《分数与除法》是人教版小学数学五年级下册第四单元《分数》第二课时的教学内容。是在对分数意义有初步认知基础上的深入理解。在这节数学课中,不仅要让学生掌握分数与除法之间直观的位置关系,还要从分数意义中理解分数与除法的联系。所以在本课的的设计中,以分数意义的辨析贯穿始终。因为分数的意义,本身就是除法的界定,这才是分数与除法最根本的联系。

本节教学内容重视引导学生在观察比较中发现分数与除法的关系,探究整数除法得不到整数商的情况时,可以用分数表示;在表示整数除法的商时,用除数作分母,用被除数做分子。教材从“分蛋糕”的实际情境引入,引导学生列出除法算式,并结合分数的意义得出结果,然后引导学生比较几个算式,探索发现分数与除法的关系。根据分数与除法的关系,让学生用分数表示两数相除的商或把分数写成两数相除的形式。

教具学具:

课件,模型。

教学设计

一、导入

师:孩子们,上课之前先考验下大家,(出示课件)这个谜底是什么?

生:月饼。

师:你们的课外知识真丰富,你们喜欢吃月饼吗?

生:喜欢。

师:老师也喜欢。在月饼中也含有许多数学知识,我们一起来看看吧(出示课件),把6块月饼平均分给3个小朋友,每人分得多少块?怎样列式计算?

生:2块,6÷3=2(块)。(板书)

师:说得真棒,要是声音再大些就更好了,我们再来看下一个问题,把1块月饼平均分给2个小朋友,每人分几块?怎样列式计算?

生:0.5块,1÷2=0.5(块)。(板书)

师:表达得特别清楚,让大家一听就懂。老师就继续考验大家,如果把1块月饼平均分给3个小朋友,每人分几块?怎样列式计算?

师:你为你们组又增添了一份光彩。看来大家已经能够解决分月饼的问题了,不用学具直接说出5除于7等于多少?

生:七分之五。

师:非常正确。我们再来看这些算式,整数除法得不到整数商的时侯,可以用什么数表示商?

生:可以用分数表示。

师:在表示整数除法的商时,用谁作分母?用谁做分子?

生:用被除数作分子,除数作分母。

师:那么分数与除法有什么样的关系呢?谁能用语言概括下?

生:被除数除以除数等于除数分之被除数。

师:你表达得这么清晰流畅,了不起!

师总结:可以用分数表示整数除法的商,用除数作为分母,被除数作为分子,除号相当于分数中的分数线。反过来,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,分数线相当于除号。所以,分数与除数的关系我们可以用式子来表示为:被除数÷除数=被除数/除数(板书)。用字母表示是?

生:a÷b= a/b(b≠0)(板书)

师:这个关系式里每个数的范围要注意什么?

生:因为在除法里除数不能是零,所以分数的分母也不能是零。即b≠0。

师:想一想分数与除法有哪些联系和区别?

教师强调:分数是一种数,但也可以看作两个数相除(分数的分子相当于除法中的被除数,分母相当于除数)。除法是一种运算。

师:今后我们再看分数时,会有两种意义。(把“1”平均分成4份,表示这样3份的数,也可以是把“3”平均分成4份,表示这样1份的数。)

二、巩固练习

师:你们知道阿凡提吗?你有他聪明吗?敢不敢挑战他?我们来闯关,大家有信心吗?

1.1.用分数表示下面各式的商。

(1)3÷2 =()

(2)2÷9 =()

(3)7÷8 =()

(4)5÷12 =()

(5)31÷5 =()

(6)m÷n =()n≠0

2.把5千克糖平均分成7份,每份是( )千克;把1千克糖平均分成7份,5份是( )千克;也就是说5千克糖的( )和1千克糖

的( )是相等的

三、课堂小结

说说你的收获是什么?重点说说分数与除法的关系。

结束语:今天我们通过自己的努力,发现并学会了这么多知识,老师真为你们骄傲!其实生活中有更多的知识等着我们去发现、探索,快做个有新人吧,你会成长得更快!

四、作业布置

练习十二第1,3题。

板书设计

分数与除法

被除数÷除数=被除数/除数

a÷b= a/b(b≠0)

教学反思

这节课在引入课题之前,先利用谜语激发学生兴趣,引进分数,复习旧知。在探索新知时,从想象中每人2个饼,到一张饼,把一张饼平均分给4个人,每人能得到几块?有了刚才的复习知识进行铺垫、迁移,很容易能用算式1÷4来计算,学生很快会说出1/4,这时我会再提问:为什么是1/4?你是怎么分得?学生用准备的圆片分一分;接着出示:学生一步步经历了分得过程,对分数的意义就理解得更好了,也就明白了为什么是3/4。当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。

五年级下册数学教案精选篇4

教学目标:

1、通过生活事例,使学生初步了解图形的旋转变换。结合生活实际,能初步感知旋转现象,探索旋转的特征和性质。

2、通过动手操作,使学生会在方格纸上将一个简单图形旋转90°。

3、初步学会运用旋转的方法在方格纸上设计图案,发展学生的空间观念。

4、欣赏图形的旋转变换所创造出的美,培养学生的审美能力;感受旋转在生活中的应用,体会数学的价值。

重、难点:

1、理解图形旋转变换的含义。

2、探索图形旋转的特征和性质。

3、能在方格纸上将一个简单图形旋转90°。

教学准备:

多媒体课件方格纸

教学过程:

一、情景导入

同学们,你们喜欢做游戏吗?今天老师给你们带来一个魔方,再做这个游戏时,最常用到的操作时什么?(旋转)

请同学们用手示范一下怎样进行旋转?(学生用手势演示)

问:你们在做旋转手势时为什么有的向左旋转,有的向右旋转?(因为有的是顺时针旋转,有的是逆时针旋转。)

集体联系顺时针旋转90度和逆时针旋转90度。

请一人到投影前操作魔方。其他同学提示其具体的旋转方向。

师:刚才同学们在做游戏的过程中,反复提到一个词“旋转”,这节课,咱们就来共同研究“旋转”。

板书课题:旋转

二、明确概念

1、联系生活

师:生活中,你还见过哪些旋转现象呢?

生:风扇、陀螺、钟表、车轮、风车……

课件出示几种旋转现象。

师:同学们说的这几种都是旋转现象,那么旋转有怎样的特征和性质呢?我们借助最常见的钟表来进行研究吧。

2、学习例3.

(1)认识线段的旋转,理解旋转的含义。

出示钟表实物。

师:请同学们观察钟表的指针,描述指针从“12”到“1”师怎样旋转的。(指针从“12”绕点O顺时针旋转30°到“1”)

师演示指针由“1”到“3”。

问:这次指针又是如何旋转的?(指针从“1”绕点O顺时针旋转60°到“3”)

师演示指针由“3”到“6”。

同桌互相说一说:指针从几开始?是绕哪个点旋转的?怎样旋转?旋转了多少度?

(2)明确旋转要素

旋转物体起止位置绕哪一点旋转方向旋转度数

板书:点方向度数

师:要想清楚说明旋转现象,明确以上几个要素最为重要。

三、探索图形旋转的特征和性质

1、观察风车的旋转过程。(出示课件)

请学生说一说,在风的吹动下,风车是如何旋转的。

风车绕点O逆时针旋转90°。

思考:你是怎样判断风车旋转的角度呢?

小组交流观察到的现象。

一是由图1到图2,风车绕点O逆时针旋转了90°;二是根据三角形变换的位置判断风车旋转的角度

三是根据对应的线段判断风车旋转的角度;四是根据对应的点判断风车旋转的角度。

2、小结

通过观察,我们发现风车旋转后,不仅每个三角形都绕点O逆时针旋转了90°,而且,每条线段,每个顶点,都绕点O逆时针旋转了90°.

3、概括旋转的特征和性质。

师:刚才通过观察我们发现,风车旋转后,每个三角形的位置都变了,那么什么没有变呢?(三角形的形状、大小没有变;点O的位置没有变;对应线段的长度没有变;对应线段的夹角没有变。)

四、绘制图形

1、自主画图。

我们已经了解了一个图形旋转的全过程,想不想自己试着画一画呢?

(1)出示例4方格纸。

(2)请学生看清图形。

(3)说一说你是怎样画的。

引导学生明确:对应点与点O所连线段的夹角都是90°;对应点到点O的距离都相等。

学生独立完成。

(4)作品展示,交流画法。

2、总结画法。

我们在画一个旋转图形时,首先要确定它周围的点,然后找到这个图形各个点的对应点,最后连线。

五年级下册数学教案精选篇5

《分数混合运算(一)》是北师大版五年级下册第五单元《分数混合运算》第一课时教学内容。下面结合实际教学反思如下:

优点:

1、充分利用情境图创设问题情境

能够创造性地使用教材,把问题情境改为学生所熟悉的校园特色团队作为学习素材,以此激励学生的学习情感,激发学生的学习兴趣。建构主义认为:学习是学生主动的建构活动,学习应与一定的情境相联系,在实际情境下进行学习,可以使学生利用原有知识和经验同化当前要学习的新知识。

在新课程背景下,计算教学不再是单纯的技能训练,而是把它作为解决问题的一个组成部分。新课前充分利用教材中的情景图创设一个问题情境,让学生自己提出问题,自主探索解决问题的方法和途径,并进行相互之间的交流,对自己或他人的活动过程、结果进行评价反思,从而使学生正确地选择了计算方法,按照一定的运算顺序进行计算,列出分步、综合算式也就是建立数学模型。学生在观察、思考、操作、交流等活动中,感受运算顺序的自然生成。通过这种教学方式,成功地促进了学生学习方式的生成。

2、关注学生的学情

学生在解答所提出的问题时,自觉地利用了分数(一步计算)的解答方法,通过画示意图、写等量关系、找到了解题步骤与关键,通过由先分步,再列出综合算式这一过程,学生很自然地将“整数的运算顺序”迁移到“分数的运算顺序”,这足以说明学生有自己丰富的数学现实,并能用之进行自由的、多角度的思考,实现知识的自我建构。注重对学生的课堂生成的及时捕捉和对比反馈,让学生在观察、交流、比较中,进一步体会分数连乘、连除或乘除混合运算的计算方法,同时注意培养学生良好的计算习惯,注意格式的规范,帮助学生养成良好的计算习惯。

3、重视数学的体验发展提升数学素养

在教学过程中,我设计了让学生动手、动脑、动口的数学活动,使学生在活动中去体验、去感受、去应用,从而加深对数学的理解。如在“通过画示意图,列分步、综合算式,着重说明综合算式先算什么,再算什么,从而让学生理解算理,掌握运算顺序”这个环节上和通过让学生分组解答不同的提问,回答这道题要先求什么等思维活动,来加深学生对数学的体验。在学完本节课后,让学生谈这节课的收获,使学生又体验到丰富的数学内容,而且在这种氛围中,师生之间的情感也达到了和谐统一。

不足:

1、教师放手不够,应当给予学生更多的观察、思考、比较、分析,和充分表达的时间,更好地确保学生的主体地位。

2、教师在教学中对电脑操作不熟练,所以造成一些时间的浪费,影响了学生的情绪,也影响了老师的情绪。

因数和倍数1的教学反思8篇

比例尺有三种表示方法:数值比例尺、图示比例尺和文字比例尺。下面是我为你整理的人教版比例尺教学设计,一起来看看吧。

人教版比例尺教学设计篇一

教学内容

《义务教育课程标准实验教科书 数学》人教版六年级下册第47、48页,练习八第1-3题。

设计理念

数学程标准指出,“数学课程不仅要考虑数学自身的特点,更就遵循学生学习数学的心理规律”。学生数学概念的获得要在观察、比较、概括、归纳等数学活动中才能形成。对于“比例尺”这样的数学概念,抓住其外延和内涵设计有效的数学活动是促进学生发展的主要途径。

学情与教材分析

“比例的应用”是在学生已经学习了比和比例的意义、比例的基本性质之后的一个教学内容。“比例尺”是运用数学解决生活问题的一个典型范例之一。本节课,要通过在生活中的应用,把握比例尺的内涵——图上距离与实际距离的比,认识两种不同的比例尺——数值比例尺和线段比例尺。比例尺的内涵是教学的一个重点,学生在学习时,对于比例尺的本质——比例尺是一个比,往往容易因为名称的误导产生歧义,对于由比例尺的规定形式——前项或后项为1,而产生的计算上的易错点,都是教学中需要特别关注的。

教学目标

1.在实践活动中体验生活中需要的比例尺,能读懂两种形式的比例尺。

2.在操作、观察、思考、归纳等学习活动中理解比例尺的意义,正确计算比例尺,了解比例尺在实际生活中的各种用途。

3、感受数学在解决问题中的作用,培养亲近数学的良好情感。

教学准备多媒体课件

教学重点理解比例尺的意义

教学难点把线段比例转换成数值比例尺

教学过程

一、激发兴趣,引入比例尺

脑筋急转弯

师:同学们,你们一定去过漳州,那你们坐车从华安到漳州大约需要多长时间?1个多小时,可是有只蚂蚁却只用了4秒钟。你知道是怎么回事吗?

生猜:蚂蚁可能在从华安到漳州的地图上爬。

师:对了。蚂蚁爬的是地图上的图上距离,板书:图上距离而我们坐车所行的是从华安到漳州的实际距离。板书:实际距离

师:看,在这幅地图上出示第一幅地图从华安到漳州蚂蚁只用了4秒钟,出示第二幅地图在这幅地图上蚂蚁用4秒钟还能到达吗?出示第三幅地图在这幅地图上呢?

师:为什么同样是从华安到漳州,有的只需4秒钟就能到达,而有的却到达不了呢?地图有大有小

请同学们观察这几幅地图,它们虽然大小不同,但形状却一样,这是什么原因呢?让学生思考片刻后才说,可先让学生说是因为人们在制作这三幅地图时所用的比例尺不同,这就是我们今天要学习的内容:比例尺板书课题

设计意图:脑筋急转弯意在激趣引出地图,对学生都比较熟悉的地图,通过“这几幅地图,它们虽然大小不同,但形状却一样,这是什么原因呢?”这个问题来引导学生思考,通过三张地图大小不一样,而表示的实际距离却相同,引起学生认知冲突,聚焦依据比例不同,表示的大小也不相同,从而引出比例尺,引导学生从生活中学习有关比例尺的内容。

二、自主学习,认识比例尺

1、什么叫比例尺?它是尺吗?是比例吗?请同学们开启课本48页,自学48页的内容。

2、揭示比例尺的意义。

你们从书上了解到什么叫比例尺?嗯,是个比 板书于课题后

前项是什么?后项呢?在板书的图上距离与实际距离中加入“:”

那就是说只要用图上距离比实际距离就能求出比例尺,还能写成什么形式?

你能说说这些比例尺的意义吗?

请同学们仔细观察这几个比例尺上的数字的变化以及这几幅地图的大小变化,你又有什么发现,同桌交流一下

比例尺前项都是1,后项数字越大,图上1厘米所表示的实际距离越长,所画出的图形就越小,后项数字越小,图上1厘米所表示的实际距离越短,所画出的图形就越大

设计意图:学生自学可能因为自身学习能力的差异而产生不同的效果,如何让不同学力的学生在自学中都能真正学有所获?问题引领是一个比较有效的方法。因此,我设计了以上三个问题,聚焦比例尺的内涵,帮助学生清晰把握。

3、练习:

知道了什么是比例尺,如果我想求一幅图的比例尺,那要怎么办呢?老师给你们资料你们会求出一幅图的比例尺吗?

①、一张桌子画在图纸上的高度是8厘米,实际高度是80厘米,求这幅图纸的比例尺是多少?

②、一栋楼房东西方向长40m,在图纸上的长度是50cm.这幅图纸的比例尺是多少?

③、在一幅地图上,量得甲地到乙地的距离是4厘米,而甲地到乙地的实际距离是160千米,这幅地图的比例尺是多少?

注意:单位统一

要化简 结果不带单位因为它表示的是两个量之间的关系

设计意图:在学生理解比例尺的意义之后马上呈现三道不同梯度的习题,一是让学生进一步理解掌握比例尺的实际意义,二是让学生正确计算比例尺,了解比例尺在实际生活中的各种用途。并能用自己的语言正确说明比例尺所表示的具体意义。

4、认识放大比例尺

观察这三个比例尺,你有什么发现?前项为1也就是说图上距离比实际距离小,其实现实中还能见到这样的比例尺课件出示一些精密零件的图纸

看,把比例尺读出来,你有什么发现?选一个说意义

小结:比例尺根据它的作用可分为缩小比例尺和放大比例尺。板书通常情况下,为了计算的方便,把比例尺写成前项或后项是1的比。

5、认识线段比例尺

刚才我们认识的比例尺都是用数字来表示的,它们都叫做数值比例尺。请同学们再来看这幅比例尺出示线段比例尺它与数值比例尺有什么不同?

学会看线段比例尺。图上每一段都是长1厘米,每一厘米都相当于实际多少千米?

用线段来表示图上距离与实际距离的关系,这叫做线段比例尺

区别:形式不同,但都表示图上距离与实际距离的倍数关系

小结:比例尺根据表现形式的不同分为数值比例尺和线段比例尺。板书

6、把上面的线段比例尺改写成数值比例尺

1 这个线段比例尺它表示图上1厘米相当于实际50千米,那你们会将它改写成数值比例尺吗?

21厘米:50千米= 1厘米:5000000厘米 =1:5000000

3根据数值比例尺标出线段比例尺

小结:线段比例尺和数值比例尺是比例尺的两种基本形式.它们之间可以进行转换.把线段比例尺转换成数值比例尺只要把写出图上距离与实际距离的比再化简就可以了.

设计意图:在具体情景中,通过操作、观察、思考、归纳等学习活动中理解放大比例尺、线段比例尺的意义以及线段比例尺和数值比例尺两种比例尺基本形式之间的转换,并准确理解比例尺的书写特征。

三、巩固练习,灵活运用

一填一填

1、在比例尺是1:2000的地图上,图上距离1厘米表示实际距离 厘米或 米

2、在比例尺是1:250000的地图上,图上距离1厘米表示实际距离 千米。

3、在比例尺是1:4000000的地图上,图上距离是实际距离的 ,实际距离是图上距离的 倍,把这个数值比例尺该成线段比例尺是

二辨一辨

1、所有的比例尺的前项都是1。

2把一个电脑零件放大到原来的100倍画在图纸上,应选用1:100的比例尺。

3、比例尺就是一把尺子。

4、一幅地图的比例尺是1:50000厘米。

5、一幅图的比例尺是8:1,这幅图所表示的实际距离大于图上距离。

三、选一选

1、用图上距离5厘米,表示实际距离200米,这幅图的比例尺是

5:200 B. C.1:4000厘米

2、长4厘米的零件,画在图纸上是40毫米,这幅图的比例尺是

1:10 B. 10:1 C. 1:1 D. 1

3、线段比例尺 改成数值比例尺是

A. 1:23 B. 1:2300000 C. 1:2300000km

设计意图:通过填一填、辨一辨、选一选等不同形式的练习让学生体会比例尺在生活中的应用,能够解决实际问题。同时通过具体情景,感受数学与生活的紧密联络

四、课后延伸

选择合适的比例尺画图

红光小学有一块长方形草坪,长85米,宽30米,把这块草坪按一定的比缩小,你能在纸上画出这个长方形草坪的平面图形吗?1:1000、1:500 1:10000

结论:一幅图的比例尺由纸张的大小来决定。

设计意图:让学生选用比例尺解答,以此培养学生思维的灵活性.这样让孩子在获得知识的同时,培养了能力,让学生真真切切的感受到生活中有数学,生活中处处有数学,提高了学生学数学用数学的意识。

五、谈学后体会。这节课你学到了什么?

设计意图:让学生回顾学习过程,反思评价,再一次体验学习经历,促进学生对知识的掌握。

因数和倍数1的教学反思篇1

?因数和倍数》是一节数学概念课,人教版新教材在引入因数和倍数的概念时与以往的教材有所不同。本节课又是这一单元的的教学重点。为让学生很好的感受因数与倍数的意义,能够熟练的找出一个数的因数与倍数,灵活地处理了教材,分为两课时进行。第一课时只让学生认识了因数和倍数的意义及找一个数的因数的方法,效果不错。

一、设计情境,引起思考。

改变教材的情境图,用学生有兴趣的情意引入课题:有12个小方块,要求摆成一个长方体,你想怎么摆。引起学生思考,学生想到有3种摆法,每种摆法怎么列式求出一共有多少方块?由于方法的多样性,为不同思维的展现提供了空间。从而理解决因数与倍数的意义。

二、引导学生探求找因数的方法,使探索有方向。

如何找一个数的因数是这节课的重点,首先放手让学生找出24的因数,由于个人经验和思维的差异,出现了不同的方法与答案,在探索这些方法和答案的过程中,学生明白了如何求出一个数的因数的方法,从而掌握了知识点。

根据学生的学习特点,灵活的应用教材,使之服务于教学,让教学有效的进行,才能达到教学的目的。

因数和倍数1的教学反思篇2

本单元涉及到的因数、倍数、质数、合数以及第四单元中出现的最大公因数、最小公倍数都属于初等数论的基本内容。是学生通过四年多数学学习,已经掌握了大量的整数知识,包括整数的认识、整数四则运算的基础上进一步探索整数的性质。

在教学中,通过教授学生认识“因数和倍数”,并掌握他们的特征:因数和倍数不能单独存在,并通过观察比较几个数的因数(或倍数),知道几个数公有的因数(或倍数)叫做他们的公因数(或公倍数),且能够在几个数的因数(或倍数还)中找出他们的公因数(或公倍数)。

接下来学习“2、5、3的倍数的特征”。发现2、5、3倍数的规律和特点。在此之前还要向学生教学什么是“奇数”什么是“偶数”,只有掌握了奇数与偶数,学习“2、5的倍数”的特征就会简单容易得多。而“3的倍数”的特征就是引导学生把各个数位上的数相加,的到的数如果是3的倍数的话,说明这个数就是3的倍数。

为了让学生巩固质数与合数,再让学生找出1~100以内的所有质数:先划掉除了2以外所有2的倍数,再划掉3的倍数、划掉5的倍数、最后划掉7的倍数,所剩下的数就是质数,并且让学生数出、记住100以内有25个质数。也可以用同样的方法去判定100以外的数是质数还是合数。

最后,再学生讲解介绍“分解质因数”,知道用短除法来分解质因数。然后对整个单元所学的知识进行梳理、归类,让学生熟记一些特殊的规律与数字,多做一些练习,加强的后进生的关注和辅导。

因数和倍数1的教学反思篇3

简单的内容中蕴藏着复杂的关系,由于新教材把“整除”的概念去掉,再也不提谁被谁整除,而改成借助整除模式na=b,直接引出因数和倍数的概念,这部分内容显得比较容易了,学生在学因数时,对于求一个数的因数,及理解一个数的因数最小是1,最大因数是它本身,及一个数的因数的个数是有限的,感觉很清楚,明白。在学倍数时,对求一个数的倍数及理解一个数的倍数中最小的是它本身,没有最大的倍数也认为容易简单,但有关因数、倍数的综合练习不少学生开始犹豫、混淆。如判断一个数的因数的个数是无限的,不少学生判断为对。练习中:18是的倍数,个别学生选择了18、36、54……。针对这种情况,我调整了练习,组织学生研究了以下几个问题:

1、写出12的因数和倍数,写出16的因数和倍数。

2、观察比较,会打消列问题:一个数的因数和它本身的关系,

3、为什么一个数的因数的个数是有限的?最小是1,最大是它本身,也就是1和它本身之间的整数。为什么一个数的倍数的个数是无限的?最小是它本身,没有最大的。

通过对这几个问题的讨论,多数学生较好的区分了一个数的因数和倍数

因数和倍数1的教学反思篇4

本节课的内容是在学生已经学习了一定的整数知识(包括整数的知识、整数的四则运算及其应用)的基础上,进一步认识整数的性质。本单元所涉及的因数和倍数都是初等数论的基础知识。

成功之处:

1.理解分类标准,明确因数和倍数的含义。在例1教学中,首先根据不同的除法算式让学生进行分类,同时思考其标准依据是什么。通过学生的独立思考和小组交流学生得出:第一种是分为两类:一类是商是整数,另一类是商是小数;第二种是分为三类:一类商是整数,一类是小数,另一类是循环小数。究竟怎样分类让学生在争论与交流中达成一致答案分为两类。然后根据第一类情况得出倍数和因数的含义,特别强调的是对于因数和倍数的含义要符合两个条件:一是必须在整数除法中,二是必须商是整数而没有余数。具备了这两个条件才能说被除数是除数的倍数,除数是被除数的因数。

2.厘清概念倍数和几倍,注重强调倍数和因数的相互依存性。在教学中可以直接告诉学生因数和倍数都不能单独存在,不能说2是因数,12是倍数,而必须说谁是谁的因数,谁是谁的倍数。对于倍数与几倍的区别:倍数必须是在整数除法中进行研究,而几倍既可以在整数范围内,也可以在小数范围内进行研究,它的研究范围较之倍数范围大一些。

不足之处:

1.练习设计容量少了一些,导致课堂有剩余时间。

2. 对因数和倍数的含义还应该进行归纳总结上升到用字母来表示。

再教设计:

1.根据课本的练习相应的进行补充。

2.因数和倍数的含义用总结为a÷b=c(a、b、c均为非0自然数),a是b和c的倍数,b和c是a的因数。

因数和倍数1的教学反思篇5

一.数形结合减缓难度

?因数和倍数》这一内容,学生初次接触。在导入中我创设有效的数学学习情境,数形结合,变抽象为直观。让学生把12个小正方形摆成不同的长方形,并用不同的乘法算式来表示自己脑中所想,借助乘法算式引出因数和倍数的意义。由于方法的多样性,为不同思维的展现提供了空间,激活学生的形象思维,而透过数学潜在的“形”与“数”的关系,为下面研究“因数与倍数”概念,由形象思维转入抽象思维打下了良好基础,有效地实现了原有知识与新学知识之间的链接。在学生已有的知识基础上,直观感知,让学生自主体验数与形的结合,进而形成因数与倍数的意义.使学生初步建立了“因数与倍数”的概念。 这样,学生已有的数学知识引出了新知识,减缓难度,效果较好。

二.自主探究,合作学习

放手让每个同学找出36的所有因数,学生围绕教师提出的“怎样才能找全36的所有因数呢?”这个问题,去寻找36的所有因数。由于个人经验和思维的差异性,出现了不同的答案,但这些不同的答案却成为探索新知的资源,在比较不同的答案中归纳出求一个数的因数的思考方法。既留足了自主探究的空间,又在方法上有所引导,避免了学生的盲目猜测。通过展示、比较不同的答案,发现了按顺序一对一对找的好方法,突出了有序思考的重要性,有效地突破了教学的

难点。通过观察12,36,30,18的因数和2,4,5,7的倍数,让学生自己说一说发现了什么?由于提供了丰富的观察对象,保证了观察的目的性。诱发学生探索与学习的欲望,从而激活学生的思维。让学生在许多的不同中通过合作交流找到相同。

三.在游戏中体验学习的快乐

在最后的环节中我设计了“找朋友”的游戏,层次是先找因数朋友,再找倍数朋友,最后为两个数找到共同的朋友。这样由浅入深的设计符合学生跳一跳就能摘到果子的心理,同时也让学生在游戏中再次体验因数与倍数的特点,如找完因数朋友时我以你是我的最大的因数朋友点出一个数的因数的个数是有限的,找倍数朋友时起来的学生非常多,让学生再次体验一个数的倍数的个数是无限的。找共同的朋友则是一个思维的升华过程,能有效地激活学生的思维,在求知欲的支配下去进行有效地思考。这一环节使课堂气氛更加热烈,也让学生在轻松的氛围中体验到学习的快乐。

这堂课我还存在许多不足,我的教学理念很清楚,课堂上学生是主体教师只是合作者。但在教学过程中许多地方还是不由自主的说得过多,给学生的自主探索空间太少。如在教学找36的因数这一环节时,由于担心孩子们是第一次接触因数,对于因数的概念不够了解,而犯这样或那样的错误,所以引导的过多讲解的过细,因此给他们自主探究的空间太小了,没能很好的体现学生的主体性。虽然是新理念

但却沿用了旧模式,在今后的教学中我还要不断改进自己的教法,让学生成为课堂的真正主人。

这堂课我的个人语言过于随意,数学是严谨的,随意性的语言会对学生的学习理解造成一定的影响。由于长期的教学习惯和自身的性格特点造成了我的语言在某些时候不够严谨。这一点我心里非常清楚,在日常的教学中也在不断地改正,但这节课有的地方还是没有注意到。因此在今后的教学中我要积极向其他老师学习,多走进优秀教师的课堂,多学多问。把握好各种学习机会,通过各种渠道不断的学习,提高自己的素质。多反思认真分析教学中出现的问题,通过不断地反思提高自己业务水平。

感谢各位老师给我这么一个宝贵的学习机会,并在这个过程中给予我的指导和帮助。今后,我一定以这一节课为契机,不断完善教学,总结经验教训,在各个方面严格要求自己,争取在今后的工作中做的更好!

因数和倍数1的教学反思篇6

?倍数和因数》是我们工作室四月份研究的一个课例,我们是先抽签上二十分钟的课堂教学,再进行研讨,我们研究了每一部分的处理方法,同时,为了让我们的课堂更加连贯、自然,我们也研究了例题之间的过渡环节,尝试找到更加恰当的处理方法。那次研究之后我们工作室的每一位成员都根据自己的想法修改了教案。前几天我们工作室又在活动中上了这节课,这次上课的是我,由于事先准备的不够充分课堂中发现了很多的问题,有上次研讨过还需要改进的问题,也有这次上课出现的新问题。课后工作室的成员给了我很多的很好的建议,我根据好的建议修改了我的 教学设计 ,下面我来具体的说一说。

1、情境导入。本节课的内容是《倍数和因数》为了让学生更清楚地感受倍数和因数的依存关系,我课上用了大头儿子和小头爸爸的例子,也用了我是老师,他们是学生的例子。但这两个例子对于本课的教学或许没有太多的意义,好像不能让学生明确感受出倍数的因数的依存关系,所以我们可以把这一部分的内容去掉,直接进入课堂,让学生进行操作活动。

2、倍数和因数的意义。本课是想通过用12个完全相同的正方形拼成长方形的活动来让学生在活动中初步感知倍数和因数的关系,再用具体的例子向学生说明倍数和因数的含义。在课堂中我直接让学生进行操作,两人小组活动,试着摆一摆,看看有没有不同的摆法,在交流的时候让学生说说自己的摆法,每排摆了几个,摆了几排,怎样用乘法算式表示,再让学生有序地说一说,为后面找一个数的因数做好铺垫。再有一道具体的算式举例说明倍数和因数的含义,用我们过去学习的乘法算式中的乘数乘乘数等于积过渡到倍数和因数,再让学生说一说其他两道乘法算式。说完后再给学生一个提醒,并让学生再根据出示的算式说一说谁是谁的倍数和谁是谁的因数,最后的时候让学生自己写一个算式,并说一说。

3、找一个数的倍数。这应该时本节课的重难点内容,在教学中一定要让学生说一说找倍数的方法,而我在上课的时候把这一个重要的部分一带而过,可以看出来很大一部分学生是没有掌握找倍数的方法的。所以我在思考这一难点该如何突破?是不是应让学生先独立想一想办法,多说一说,给学生足够多的时间让学生去说自己用来找倍数的方法,这样多种方法出来以后,我们可以对方法进行优化,选择快速简单的找法。在教学的时候,同时注培养学生有序写出倍数,注意倍数书写的格式等意识,可以比较有序的找和无序的找,让学生自己感受有序的好处,学生有了有序地找的基本方法后,在进行练习的时候也会选择刚才优化过的好的方法进行练习。

4、找倍数的特征。在完成找一个数的倍数之后,我们可以直接出示3,2,5的倍数是哪些,让学生观察三个倍数,再说一说自己的发现,放手让学生去找或许学生能够很快的找出来,但如果给好具体的问题,可能会限制一些学生的思考。如果学生在观察时没有发现我们所想要总结的特征,可以对学生进行适当的提示,让学生观察一个数最小的倍数,最大的倍数和倍数的个数等。先给学生足够的时间让学生自己去找,我们要相信他们藕能力做到。

5、课堂常规的问题。在上课之前我应先确定好小组的具体分配,以免学生在小组活动中找不到合作的对象,如果上课之前具体的分好了,小组讨论的效率会高很多。在上课时,我要少说,把更多说的机会留给学生,让学生去表达自己的想法,同时还要相信学生,不要怕学生不会,而给出很多的条条框框,限制了学生的思维发展。

因数和倍数1的 教学反思 篇7

?倍数和因数》这一节的主要内容是让学生在已有知识和经验的基础上,自主探索和总结找一个数的倍数和因数的方法;用“列举法”研究一个数的倍数的特点和一个数的因数的特点。 这部分内容学生初次接触,对于学生来说是比较难掌握的内容。首先是名称比较抽象,在现实生活中又不经常接触,对这样的概念教学,要想让学生真正理解、掌握、判断,需要一个长期的消化理解的过程。 这节课我在教学中充分体现以学生为主体,为学生的探究发现提供足够的时空和适当的指导,同时,也为提高课堂教学的有效性,我在本课的教学中体现了自主化、活动化、合作化和情意化,具体做到了以下几点:

(一) 操作实践,举例内化,认识倍数和因数

我创设有效的数学学习情境,数形结合,变抽象为直观。首先让学生动手操作把12个小正方形摆成不同的长方形,再让学生写出不同的乘法算式,借助乘法算式引出因数和倍数的意义。这样在学生已有的知识基础上,从动手操作,直观感知,使概念的揭示突破了从抽象到抽象,从数学到数学,让学生自主体验数与形的结合,进而形成因数与倍数的意义.使学生初步建立了“因数与倍数”的概念,使数与形做到了有机的结合。 这样,充分学习、利用、挖掘教材,用学生已有的数学知识引出了新知识,降低了难度,效果较好。

(二)自主探究,意义建构,找倍数和因数

一个数的倍数与因数的特征,单凭记忆也不难接受,为防止学生进行“机械学习”,我提出“任何一个不是0的自然数的因数有什么特点,”让学生观察12,20,16,36的因数,思考:一个数的因数的个数是有限的还是无限的?其中最大的因数是几?最小的呢?让学生的思维有了明确的指向。整个教学过程中力求体现学生是学习的主体,教师只是教学活动的组织者、指导者、参与者。整节课中,教师始终为学生创造宽松的学习氛围,让学生自主探索,学习理解倍数和因数的意义,探索并掌握找一个数的倍数和因数的方法,引导学生在充分的动口、动手、动脑中自主获取知识。

(三)抓住学生思维的“最近发展区”,让学生在“独立思考——集体交流——互相讨论”的过程中,促使学生学会有序思考,从而形成基本的技能与方法,既关注了过程,又关注了结果。

找一个数的因数的方法是本节课的难点,在教学过程中让学生自主探索,在随后的巡视中发现有很多的学生完成的不是很好,我就决定先交流再让学生寻找,这样就用了很多时间,最后就没有很多的时间去练习,我认为虽然时间用的过多,但我认为学生探索的比较充分,学生也有收获。如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里可以充分发挥小组学习的优势。先让学生自己独立找36的因数,我巡视了一下三分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自己刚才的方法进行反思,吸收同伴中好的方法,这时老师再给予有效的指导和总结。

(四)变式拓展,实践应用---—促进智能内化

练习的设计不仅紧紧围绕教学重点,而且注意到了练习的层次性,趣味性。在游戏中,师生互动,激活了学生的情感,学生的思维不断活跃起来,学生不仅参与率高,而且还较好地巩固了新知。课上,我能注重自始至终关注学生学习兴趣、学习热情、学习自信等情感因素的培养,并及时让学生感受到学习成功的喜悦,享受数学,感悟文化魅力。

(五)重视数学意义的渗透与拓展,力求用数学的本质吸引学生,树立为学生的继续学习和终身发展服务的意识。本节课的设计,我就关注了学生的学习后劲。如列举法的介绍,有序思考的解决问题的策略等。

由于这节是概念课,因此有不少东西是由老师告知的,但并不意味着学生完全被动地接受。教学之前我知道这节课时间会很紧,所以在备课的时候,我认真钻研了教材,仔细分析了教案,看哪些地方时间安排的可以少一些,所以我让学生先进性了预习,做好了一定的准备工作。在第一部分认识因数和倍数这一环节里缩短出示时间,直接出示,,实际效果我认为是比较理想的。课上还应该及时运用多媒体将学生找的因数呈现出来,引导学生归纳总结自己的发现:最小的因数是1,最大的因数是它本身。教师应该及时跟上个性化的语言评价,激活学生的情感,将学生的思维不断活跃起来。

因数和倍数1的教学反思篇8

我发现"倍数和因数"这一单元大部分学生基础知识及基本概念掌握较好,倍数与因数的应用相当部分学生应用也比较灵活。从学生的答卷情况来看存存在问题也不少,纵观本单元的教学,从中得到的反思:

1、创设了学生熟悉的生活情境

不论是新课的讲授还是知识的实际应用,都是从学生已有的生活经验出发,激发了学生主动学习与参与的兴趣,引导学生感悟到,生活中处处有数学,数学中的倍数、因数就在身边,从生活中学习数学、应用数学问题。

2、采用了小组合作学习的模式

在新课的教学中,让学生通过观察,发现现实生活中的数以及有关倍数、因数的特征及应用以后,在学生独立尝试解决问题的基础上进行小组讨论:如何合理将分类,2、3、5的倍数的特征,如何找因数,找质数等等,这些都有以小组讨论作为探索新知的起点,在小组合作学习中,给学生搭建自主的活动空间和交流的平台。

3、充分体现了以学生为主体的指导思想

在课堂上,努力营造轻松、愉快的学习环境,引导学生积极参与学习过程。重视让每个学生都在小组内发表自己的想法,每个知识点的建立、新知识的形成尽量让学生从已有知中识讨论、寻求,同时也倾听同伴的观点,相互学习。体现以“以人发展为本”的新理念,尊重学生,信任学生,敢于放手让学生自己去学习。整个教学过程学生从已有的知识经验的实际状态出发,通过操作、讨论、归纳,经历了知识的发现和探究过程,从中让让学生体验了解决问题的喜悦或失败的情感。

4、重视新知识的应用

每学习一个新的知识点及时让学生运用所学的知识解决实际问题,使学生感到数学就在生活中,并且运用新知识灵活解决问题。

5、不足之处

(1)、在教学中还有一小部分学生未积极参与到学习中来,如何让全体学生都参与到数学研究中来,仍有待于进一步的加强。

(2)、本单元的测验卷的应用部分要求学生说明解题的理由的比较多,而学生也失分比较严重,说明学生在这方面知识较薄弱,今后的教学中要加强突破这一环节。

(3)、也出现了很多教学的困惑.如在教学中明知一小部分学生在某些知识点存在缺陷,但很难抽时间弥补及跟进。

关于“五年级下册数学教案”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

(2)

猜你喜欢

发表回复

本站作者才能评论

评论列表(3条)

  • 是宏畅吖的头像
    是宏畅吖 2026年01月13日

    我是西楚号的签约作者“是宏畅吖”

  • 是宏畅吖
    是宏畅吖 2026年01月13日

    本文概览:网上有关“五年级下册数学教案”话题很是火热,小编也是针对五年级下册数学教案寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。 关于五年级下...

  • 是宏畅吖
    用户011311 2026年01月13日

    文章不错《五年级下册数学教案》内容很有帮助

联系我们:

邮件:西楚号@gmail.com

工作时间:周一至周五,9:30-17:30,节假日休息

关注微信